物理 波動5 屈折の法則

ふぃじっくす

どうも、やまとです。

波の基本性質の最終回です。波動現象の大きな特徴である屈折回折について見ていきます。

反射の法則のときと同じように、図のように波が進行してきて、波面がABに達したときを考えましょう。点Aから出た素源波は、Bにいた波面がDまでやってくる時間で媒質Ⅱ側にv2tだけ広がっています(v2の方が小さいとしています)。屈折波の波面は辺ADの各点から出た素源波に共通に接する面です(緑の実線)。この波面と垂直に波は屈折をして進んでいきます。

上の図から、図形的な処理をしていきます。入射角と屈折角のsinを三角形の辺の長さで表します。辺々の比をとると、 入射角と屈折角のsinと速さの関係が得られます。さらに、波の基本式から波長の関係を得ることもできます。ここで大切なのは、屈折によって振動数は変化しないということです。これらはすべてイコールで結ぶことができ、これらを媒質Ⅰに対する媒質Ⅱの屈折率(相対屈折率)といいます。この式が”屈折の法則”です。

最後に波が物体の後ろ側に回り込む回折という現象です。回折は隙間や障害物の幅に対して波長が小さいときはほとんど起こりませんが、同程度以上になると目立つようになります。これもホイヘンスの原理によって説明できます。上の図は波がスリット(隙間)を通っていく場合です。スリットが狭いときは大きく回折し、狭いときはあまり回折しません。

障害物に対して波長が短いときはあまり回折しませんが、波長が大きいときは大きく回折しています。

したがって、音は波長が非常に長い(2cm~20m)ので、回折しやすい=影ができにくい、といえます。回折によって音が干渉し、大きく聞こえる場所と小さく聞こえる場所ができることがあります。
逆に、光は波長が非常に短い(1µm以下)ので、回折しにくい=影ができやすい、といえます。ただし、光もスリットが十分小さいときには回折現象が起こり、回折した光が干渉を起こして明暗の縞模様をつくることがあります。

音と光については、このあと詳しく見ていきます。ここまでの波の基本現象をしっかり押さえて、進んでいきましょう。

最後まで読んでいただき、ありがとうございました。

コメント

タイトルとURLをコピーしました